Quaternionic-solvable hypercomplex nilmanifolds

Início: 17/05/2024 17:00

Término: 17/05/2024 18:00

Palestrante: Yulia Gorginyan (IMPA)

E-mail do Palestrante: kiyulia0@gmail.com

Resumo: A hypercomplex structure on a Lie algebra is a triple of complex structures I, J, and K satisfying the quaternionic relations. A quaternionic-solvable Lie algebra is a Lie algebra, admitting a finite filtration by quaternionic-invariant subalgebras, such that each successive quotient is abelian. We will discuss the quaternionic-solvable hypercomplex structures on a nilpotent Lie algebra and hypercomplex nilmanifolds, corresponding to them.

HomeProjetosPesquisadoresPublicações