A diameter gap for isometric quotients of the unit sphere

Início: 25/03/2022 17:00

Término: 25/03/2022 18:00

Palestrante: Claudio Gorodski (USP)

E-mail do Palestrante: claudio.gorodski@usp.br

Resumo: We will explain our proof of the existence of $epsilon>0$ such that every quotient of the unit sphere $S^n$ ($ngeq2$) by a isometric group action has diameter zero or at least $epsilon$. The novelty is the independence of $epsilon$ from~$n$. The classification of finite simple groups is used in the proof. (Joint work with C. Lange, A. Lytchak and R. A. E. Mendes.)

HomeProjetosPesquisadoresPublicações