Diameter and Laplace eigenvalue estimates for homogeneous Riemannian manifolds

Início: 09/07/2020 17:00

Término: 09/07/2020 18:00

Palestrante: Emilio Lauret (Universidad Nacional del Sur)

E-mail do Palestrante:

Resumo: Given $G$ a compact Lie group and $K$ a closed subgroup of it, we will study whether the functional $lambda_1(G/K,g) textrm{diam}(G/K,g)^2$ is bounded by above among $G$-invariant metrics $g$ on the (compact) homogeneous space $G/K$. Here, $textrm{diam}(G/K,g)$ and $lambda_1(G/K,g)$ denote the diameter and the smallest positive eigenvalue of the Laplace-Beltrami operator associated to $(G/K,g)$.

HomeProjetosPesquisadoresPublicações